Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Clin Oncol ; 36(24): 2538-2544, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29989857

RESUMO

Purpose NRG Oncology/RTOG 1203 was designed to compare patient-reported acute toxicity and health-related quality of life during treatment with standard pelvic radiation or intensity-modulated radiation therapy (IMRT) in women with cervical and endometrial cancer. Methods Patients were randomly assigned to standard four-field radiation therapy (RT) or IMRT radiation treatment. The primary end point was change in patient-reported acute GI toxicity from baseline to the end of RT, measured with the bowel domain of the Expanded Prostate Cancer Index Composite (EPIC). Secondary end points included change in patient-reported urinary toxicity, change in GI toxicity measured with the Patient-Reported Outcome Common Terminology Criteria for Adverse Events, and quality of life measured with the Trial Outcome Index. Results From 2012 to 2015, 289 patients were enrolled, of whom 278 were eligible. Between baseline and end of RT, the mean EPIC bowel score declined 23.6 points in the standard RT group and 18.6 points in the IMRT group ( P = .048), the mean EPIC urinary score declined 10.4 points in the standard RT group and 5.6 points in the IMRT group ( P = .03), and the mean Trial Outcome Index score declined 12.8 points in the standard RT group and 8.8 points in the IMRT group ( P = .06). At the end of RT, 51.9% of women who received standard RT and 33.7% who received IMRT reported frequent or almost constant diarrhea ( P = .01), and more patients who received standard RT were taking antidiarrheal medications four or more times daily (20.4% v 7.8%; P = .04). Conclusion Pelvic IMRT was associated with significantly less GI and urinary toxicity than standard RT from the patient's perspective.


Assuntos
Neoplasias do Endométrio/radioterapia , Lesões por Radiação/epidemiologia , Radioterapia/efeitos adversos , Radioterapia/métodos , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Medidas de Resultados Relatados pelo Paciente , Pelve/efeitos da radiação , Lesões por Radiação/etiologia , Radioterapia de Intensidade Modulada/efeitos adversos
2.
Int J Radiat Oncol Biol Phys ; 95(5): 1520-1526, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27315666

RESUMO

PURPOSE: To compare the treatment plans for accelerated partial breast irradiation calculated by the new commercially available collapsed cone convolution (CCC) and current standard TG-43-based algorithms for 50 patients treated at our institution with either a Strut-Adjusted Volume Implant (SAVI) or Contura device. METHODS AND MATERIALS: We recalculated target coverage, volume of highly dosed normal tissue, and dose to organs at risk (ribs, skin, and lung) with each algorithm. For 1 case an artificial air pocket was added to simulate 10% nonconformance. We performed a Wilcoxon signed rank test to determine the median differences in the clinical indices V90, V95, V100, V150, V200, and highest-dosed 0.1 cm(3) and 1.0 cm(3) of rib, skin, and lung between the two algorithms. RESULTS: The CCC algorithm calculated lower values on average for all dose-volume histogram parameters. Across the entire patient cohort, the median difference in the clinical indices calculated by the 2 algorithms was <10% for dose to organs at risk, <5% for target volume coverage (V90, V95, and V100), and <4 cm(3) for dose to normal breast tissue (V150 and V200). No discernable difference was seen in the nonconformance case. CONCLUSIONS: We found that on average over our patient population CCC calculated (<10%) lower doses than TG-43. These results should inform clinicians as they prepare for the transition to heterogeneous dose calculation algorithms and determine whether clinical tolerance limits warrant modification.


Assuntos
Algoritmos , Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Modelos Estatísticos , Hipofracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Mama/fisiopatologia , Simulação por Computador , Feminino , Humanos , Órgãos em Risco/efeitos da radiação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Resultado do Tratamento
3.
J Appl Clin Med Phys ; 15(1): 4531, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24423854

RESUMO

This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS-RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ± 3%/± 3 mm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/± 3 mm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.


Assuntos
Neoplasias da Mama/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Estudos de Viabilidade , Feminino , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
4.
Brachytherapy ; 12(2): 114-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22884255

RESUMO

PURPOSE: Most institutions model breast epidermis with a surface contour and record the maximum dose on the external surface of the patient. The objective of this study was to compare the external surface contour (ext) model of the skin with our current volumetric model for skin for radiation treatment planning in accelerated partial breast irradiation brachytherapy. METHODS AND MATERIALS: A literature search was conducted to identify studies measuring breast epidermal thickness. Clinical plans were performed with a 2-mm contraction of the external surface contour. This 2-mm contraction of the external surface contour was used to approximate breast epidermis thickness. Then, the external surface contour was expanded 5mm outside the external contour of the patient for the second skin model. Maximum doses from the two models were recorded and compared. RESULTS: The average breast epidermal thickness from five studies was 1.68mm. Mean percent difference between skin and ext+5mm for balloon plans, strut plans, and all plans was 10.1%, 14.5%, and 12.5%, respectively. Differences in doses between the two skin models were statistically significant (p<0.0001). CONCLUSIONS: The volumetric skin model was validated because the average breast epidermal thickness was 1.68mm. The surface model for skin may underestimate the dose delivered to the epidermis by as much as 23.8%. The external surface contour method does not accurately represent the dermatologic skin thickness of the breast as the skin is modeled as a surface rather than a volume. These discrepancies may skew correlations of dose to skin and toxicity determinations.


Assuntos
Algoritmos , Modelos Biológicos , Doses de Radiação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Fenômenos Fisiológicos da Pele , Simulação por Computador , Humanos , Especificidade de Órgãos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Contemp Brachytherapy ; 4(1): 29-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23346137

RESUMO

PURPOSE: To evaluate and determine whether 30 patients previously treated with the SAVI™ device could have been treated to a PTV_EVAL created with a 1.5 cm expansion. This determination was based upon dosimetric parameters derived from current recommendations and dose-response data. MATERIAL AND METHODS: Thirty patients were retrospectively planned with PTV_EVALs generated with a 1.5 cm expansion (PTV_EVAL_1.5). Plans were evaluated based on PTV_EVAL_1.5 coverage (V90, V95, V100), skin and rib maximum doses (0.1 cc maximum dose as a percentage of prescription dose), as well as V150 and V200 for the PTV_EVAL_1.5. The treatment planning goal was to deliver ≥90% of the prescribed dose to ≥90% of the PTV_EVAL_1.5. Skin and rib maximum doses were to be ≤125% of the prescription dose and preferably ≤100% of the prescription dose. V150 and V200 were not allowed to exceed 52.5 cc and 21 cc, respectively. Plans not meeting the above criteria were recomputed with a 1.25 cm expanded PTV_EVAL and re-evaluated. RESULTS: Based on the above dose constraints, 30% (9/30) of the patients evaluated could have been treated with a 1.5 cm PTV_EVAL. The breakdown of cases successfully achieving the above dose constraints by applicator was: 0/4 (0%) 6-1, 6/15 (40%) 8-1, and 3/11 (27%) 10-1. For these PTV_EVAL_1.5 plans, median V90% was 90.3%, whereas the maximum skin and rib doses were all less than 115.2% and 117.6%, respectively. The median V150 and V200 volumes were 39.2 cc and 19.3, respectively. The treated PTV_EVAL_1.5 was greater in volume than the PTV_EVAL by 41.7 cc, and 60 cc for the 8-1, and 10-1 applicators, respectively. All remaining plans (17) successfully met the above dose constraints to be treated with a 1.25 cm PTV_EVAL (PTV_EVAL_1.25). For the PTV_EVAL_1.25 plans, V90% was 93.7%, and the maximum skin and rib doses were all less than 109.2% and 102.5%, respectively. The median V150 and V200 volumes were 41.2 cc and 19.3, respectively. The treated PTV_EVAL_1.25 was greater in volume than the PTV_EVAL by 16 cc, 24.9 cc, and 33.5 cc for the 6-1, 8-1 and 10-1 applicators, respectively. CONCLUSIONS: It is dosimetrically possible to treat beyond the currently advised 1.0 cm expanded PTV_EVAL. Most patients should be able to be treated with a 1.25 cm PTV_EVAL and a select group with a 1.5 cm PTV_EVAL. Applicator size appears to determine the ability to expand to a 1.5 cm PTV_EVAL, as smaller devices were not as propitious in this regard. Further studies may identify additional patient groups that would benefit from this approach.

6.
Rep Pract Oncol Radiother ; 18(2): 101-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24416536

RESUMO

BACKGROUND: The demand of improved dose conformity of the tumor has been increased in radiation therapy with the advent of recent imaging facilities and efficient computer technologies. AIM: We compared the intensity modulated radiotherapy (IMRT) plans delivered with the sliding window (SW IMRT) and step and shoot (SS IMRT) techniques. MATERIALS AND METHODS: Thirteen patients were planned on 15 MV X-ray for five, seven, nine and thirteen beams direction making the dose constraints analogous. Eclipse treatment planning system with Helios inverse planning software, and Linear Accelerator Varian 2100 C/D with 120 multileaf collimators (MLCs) were used. Gamma analysis was applied to the data acquired with the MapCheck 2™ for different beam directions plan in the sliding window and step and shoot technique to meet the 95% pass criteria at 3%/3 mm. The plans were scrutinized using D mean, D max, D1%, D95%, dose uniformity index (UI), dose conformity index (CI), dose homogeneity index (HI) and monitor units (MUs). RESULTS: Our data show comparable coverage of the planning target volume (PTV) for both the sliding window and step and shoot techniques. The volume of PTV receiving the prescription dose was 99.8 ± 0.05% and the volume of PTV receiving the maximum dose was 107.6 ± 2.5% in both techniques. Bladder and rectum maximum mean doses for the sliding window and step and shoot plans were 38.1 ± 2.6% and 42.9 ± 10.7%. Homogeneity index (HI) for both techniques was 0.12 ± 0.02 and 0.13 ± 0.02, uniformity index (UI) was 1.07 ± 0.02 and 108 ± 0.01 and conformity index at 98% isodose (CI 98%) was 0.96 ± 0.005 and 0.96 ± 0.005 for the sliding window and step and shoot techniques, respectively, and MUs were 10 ± 12% lower in the step and shoot compared to the sliding window technique. CONCLUSION: All these factors indicate that coverage for PTV was nearly identical but dose to organs-at-risk (OARs) was lower in the step and shoot technique.

7.
Brachytherapy ; 10(3): 178-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20719576

RESUMO

PURPOSE: Accelerated partial breast irradiation (APBI) has gained popularity as an alternative to adjuvant whole breast irradiation; however, owing to limitations of delivery devices for brachytherapy, APBI has not been a suitable option for all the patients. This report evaluates APBI using the strut-adjusted volume implant (SAVI) single-entry catheter to deliver brachytherapy for breast cancer in the setting of an augmented breast. METHODS AND MATERIALS: The patient previously had placed bilateral subpectoral saline implants; stereotactic core biopsy revealed estrogen receptor- and progesterone receptor-positive ductal carcinoma in situ of intermediate nuclear grade. The patient underwent needle-localized segmental mastectomy of her left breast; pathologic specimen revealed no residual malignancy. An SAVI 8-1 device was placed within the segmental resection cavity. Treatment consisted of 3.4 Gy delivered twice a day for 5 days for a total dose of 34 Gy. Treatments were delivered with a high-dose-rate (192)Ir remote afterloader. RESULTS: Conformance of the device to the lumpectomy cavity was excellent at 99.2%. Dosimetric values of percentage of the planning target volume for evaluation receiving 90% of the prescribed dose, percentage of the planning target volume for evaluation receiving 95% of the prescribed dose, volume receiving 150% of the prescribed dose, and volume receiving 200% of the prescribed dose were 97.1%, 94.6%, 22.7 cc, and 11.6 cc, respectively. Maximum skin dose was 115% of the prescribed dose. The patient tolerated treatment well with excellent cosmetic results, and limited acute and late toxicity at 8 weeks and 6 months, respectively. CONCLUSIONS: Breast augmentation should not be an exclusion criterion for the option of APBI. The SAVI single-entry catheter is another option to successfully complete APBI using brachytherapy for breast cancer in the setting of an augmented breast.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Cateterismo Periférico/instrumentação , Mamoplastia , Desenho de Equipamento , Feminino , Humanos , Pessoa de Meia-Idade , Resultado do Tratamento
8.
Med Phys ; 36(9): 4147-55, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19810488

RESUMO

PURPOSE: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A3)], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. METHODS: The dosimetry of the device for a HDR 192Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR 192Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. RESULTS: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. CONCLUSIONS: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A3 may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.


Assuntos
Braquiterapia/instrumentação , Método de Monte Carlo , Tomografia Computadorizada por Raios X/métodos , Neoplasias do Colo do Útero/radioterapia , Braquiterapia/métodos , Simulação por Computador , Desenho de Equipamento , Feminino , Dosimetria Fotográfica , Humanos , Radioisótopos de Irídio , Modelos Teóricos , Imagens de Fantasmas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Reto/efeitos da radiação , Rotação , Incerteza , Bexiga Urinária/efeitos da radiação
9.
J Appl Clin Med Phys ; 11(1): 3103, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20160682

RESUMO

A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.


Assuntos
Braquiterapia , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador , Neoplasias do Colo do Útero/radioterapia , Algoritmos , Radioisótopos de Césio/uso terapêutico , Feminino , Humanos , Imageamento Tridimensional , Nanopartículas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo , Tomografia Computadorizada por Raios X , Neoplasias do Colo do Útero/patologia
10.
Med Phys ; 36(12): 5515-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095264

RESUMO

PURPOSE: Intracavitary brachytherapy (ICBT) is an integral part of the treatment regimen for cervical cancer and, generally, outcome in terms of local disease control and complications is a function of dose to the disease bed and critical structures, respectively. Therefore, it is paramount to accurately determine the dose given via ICBT to the tumor bed as well as critical structures. This is greatly facilitated through the use of advanced three-dimensional imaging modalities, such as CT and MR, to delineate critical and target structures with an ICBT applicator inserted in vivo. These methods are not possible when using a shielded applicator due to the image artifacts generated by interovoid shielding. The authors present two prototype shielded ICBT applicators that can be utilized for artifact-free CT image acquisition. They also investigate the MR amenability and dosimetry of a novel tungsten-alloy shielding material to extend the functionality of these devices. METHODS: To accomplish artifact-free CT image acquisition, a "step-and-shoot" (S&S) methodology was utilized, which exploits the prototype applicators movable interovoid shielding. Both prototypes were placed in imaging phantoms that positioned the applicators in clinically applicable orientations. CT image sets were acquired of the prototype applicators as well as a shielded Fletcher-Williamson (sFW) ovoid. Artifacts present in each CT image set were qualitatively compared for each prototype applicator following the S&S methodology and the sFW. To test the novel tungsten-alloy shielding material's MR amenability, they constructed a phantom applicator that mimics the basic components of an ICBT ovoid. This phantom applicator positions the MR-compatible shields in orientations equivalent to the sFW bladder and rectal shields. MR images were acquired within a gadopentetate dimeglumine-doped water tank using standard pulse sequences and examined for artifacts. In addition, Monte Carlo simulations were performed to match the attenuation due to the thickness of this new shield type with current, clinically utilized ovoid shields and a 192Ir HDR/PDR source. RESULTS: Artifact-free CT images could be acquired of both generation applicators in a clinically applicable geometry using the S&S method. MR images were acquired of the phantom applicator containing shields, which contained minimal, clinically relevant artifacts. The thickness required to match the dosimetry of the MR-compatible and sFW rectal shields was determined using Monte Carlo simulations. CONCLUSIONS: Utilizing a S&S imaging method in conjunction with prototype applicators that feature movable interovoid shields, they were able to acquire artifact-free CT image sets in a clinically applicable geometry. MR images were acquired of a phantom applicator that contained shields composed of a novel tungsten alloy. Artifacts were largely limited to regions within the ovoid cap and are of no clinical interest. The second generation A3 utilizes this material for interovoid shielding.


Assuntos
Braquiterapia/instrumentação , Proteção Radiológica , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Ligas , Braquiterapia/efeitos adversos , Desenho de Equipamento , Feminino , Humanos , Imageamento por Ressonância Magnética , Método de Monte Carlo , Radiometria , Planejamento da Radioterapia Assistida por Computador , Reto/citologia , Reto/efeitos da radiação , Tomografia Computadorizada por Raios X , Tungstênio/química , Bexiga Urinária/citologia , Bexiga Urinária/efeitos da radiação
11.
Int J Radiat Oncol Biol Phys ; 72(1): 220-7, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18722273

RESUMO

PURPOSE: To investigate the potential of a novel deterministic solver, Attila, for external photon beam radiotherapy dose calculations. METHODS AND MATERIALS: Two hypothetical cases for prostate and head-and-neck cancer photon beam treatment plans were calculated using Attila and EGSnrc Monte Carlo simulations. Open beams were modeled as isotropic photon point sources collimated to specified field sizes. The sources had a realistic energy spectrum calculated by Monte Carlo for a Varian Clinac 2100 operated in a 6-MV photon mode. The Attila computational grids consisted of 106,000 elements, or 424,000 spatial degrees of freedom, for the prostate case, and 123,000 tetrahedral elements, or 492,000 spatial degrees of freedom, for the head-and-neck cases. RESULTS: For both cases, results demonstrate excellent agreement between Attila and EGSnrc in all areas, including the build-up regions, near heterogeneities, and at the beam penumbra. Dose agreement for 99% of the voxels was within the 3% (relative point-wise difference) or 3-mm distance-to-agreement criterion. Localized differences between the Attila and EGSnrc results were observed at bone and soft-tissue interfaces and are attributable to the effect of voxel material homogenization in calculating dose-to-medium in EGSnrc. For both cases, Attila calculation times were <20 central processing unit minutes on a single 2.2-GHz AMD Opteron processor. CONCLUSIONS: The methods in Attila have the potential to be the basis for an efficient dose engine for patient-specific treatment planning, providing accuracy similar to that obtained by Monte Carlo.


Assuntos
Análise de Elementos Finitos , Neoplasias de Cabeça e Pescoço/radioterapia , Método de Monte Carlo , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Masculino , Aceleradores de Partículas , Fótons/uso terapêutico , Neoplasias da Próstata/diagnóstico por imagem , Radiografia
12.
Med Phys ; 35(6): 2279-85, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18649459

RESUMO

The goal of this work was to calculate the dose distribution around a high dose-rate 192Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S(n) (angular order), P(n) (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within +/- 3% and +/- 5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S12 was sufficient to resolve the solution in angle. P2 expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Radiometria/métodos , Benchmarking , Simulação por Computador , Método de Monte Carlo , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Fatores de Tempo
13.
Med Dosim ; 32(3): 181-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17707197

RESUMO

The purpose of this study was to compare the dose distribution of Iridium-192 ((192)Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ((137)Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the (137)Cs and (192)Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% +/- 1% and 6% +/- 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% +/- 3% lower than the LDR dose, mainly because of the (192)Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% +/- 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers.


Assuntos
Braquiterapia/métodos , Neoplasias do Colo do Útero/radioterapia , Braquiterapia/instrumentação , Feminino , Humanos , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
14.
Radiother Oncol ; 81(2): 206-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17069913

RESUMO

Differences were evaluated in external-beam treatment plan dose calculations that result from the use of different Hounsfield-unit to electron-density conversion curves with CT images acquired with various tube potentials. These differences were found to be clinically insignificant and it was concluded that the impact of CT tube potential on treatment planning is negligible.


Assuntos
Neoplasias/radioterapia , Dosagem Radioterapêutica/normas , Planejamento da Radioterapia Assistida por Computador/normas , Tomografia Computadorizada por Raios X , Elétrons , Humanos , Neoplasias/diagnóstico por imagem , Fótons
15.
Phys Med Biol ; 51(16): 4083-94, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16885626

RESUMO

We performed a Monte Carlo study to compare dose distributions for a Fletcher-Suit-Delclos (FSD) ovoid used with (137)Cs low-dose-rate (LDR) sources with those for a Fletcher-Williamson (FW) ovoid used with an (192)Ir pulsed-dose-rate (PDR) source for intracavitary brachytherapy of cervical cancer. We recently reported on extensive validation of Monte Carlo MCNPX models of these ovoids using radiochromic film measurements. Here, we compared these models assuming identical loading of 10, 15 and 20 mgRaEq (72, 108 and 145 cGy cm(2) h(-1), respectively) in three dose mesh planes: one perpendicular to the ovoid long axis bisecting the ovoid, one parallel to and displaced 2 cm medially from the long axis of the ovoid, and a 'rectal' plane perpendicular to the long axis located 1 cm distal to the distal face of the ovoid cap. The FW ovoid delivered slightly higher doses (within 10%) over all loadings to regions away from the bladder and rectal shields when compared to the FSD ovoid. However, the FW ovoid delivered much higher doses (>50%) in regions near these shields. In the rectal plane, the FW ovoid delivered a slightly higher dose, but within the region directly behind the rectal shield, the FW ovoid delivered a dose ranging from +35% to -35% of the FSD dose distribution. We attribute these differences to intrinsic differences in source characteristics (radial dose function and anisotropy factors) and extrinsic factors such as the solid-angle effect between sources and shields and applicator design.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Carga Corporal (Radioterapia) , Simulação por Computador , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Modelos Biológicos , Modelos Estatísticos , Método de Monte Carlo , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Espalhamento de Radiação
16.
Phys Med Biol ; 51(9): 2253-65, 2006 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-16625040

RESUMO

Radiotherapy calculations often involve complex geometries such as interfaces between materials of vastly differing atomic number, such as lung, bone and/or air interfaces. Monte Carlo methods have been used to calculate accurately the perturbation effects of the interfaces. However, these methods can be computationally expensive for routine clinical calculations. An alternative approach is to solve the Boltzmann equation deterministically. We present one such deterministic code, Attila. Further, we computed a brachytherapy example and an external beam benchmark to compare the results with data previously calculated by MCNPX and EGS4. Our data suggest that the presented deterministic code is as accurate as EGS4 and MCNPX for the transport geometries examined in this study.


Assuntos
Braquiterapia/métodos , Modelos Biológicos , Método de Monte Carlo , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Carga Corporal (Radioterapia) , Simulação por Computador , Análise de Elementos Finitos , Humanos , Modelos Estatísticos , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Validação de Programas de Computador
17.
Radiother Oncol ; 77(2): 210-5, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16216363

RESUMO

BACKGROUND AND PURPOSE: Dose rate distributions around Fletcher Suit Delclos (FSD) tandem applicators used for intracavitary brachytherapy are usually calculated by assuming each source is a point source and summing the contributions from each of the sources. Consequently, interpellet attenuation and scattering are ignored. Additional error may be introduced because the applicator walls and tip screw are not considered. The focus of this study was a Monte Carlo simulation of a Selectron tandem, verification of the calculations, and presentation of the implications of the point-source approximation for treatment planning. MATERIALS AND METHODS: MCNPX 2.4.k was used to calculate dose rate distributions around straight and curved tandems. The Monte Carlo calculations were verified with radiochromic film. RESULTS: MCNPX calculated dose to within +/-2% or +/-2 mm for 97% of the points on the film parallel to the long axis and 98% on a film perpendicular to the long axis of the straight portion of the tandem. The point source approximation overestimated dose by as much as 33% superior to the tip of the tandem as compared to MCNPX. The point source approximation overestimated dose when photons passed through multiple pellets by as much as 18% as compared to MCNPX. Laterally, the dose distribution was not affected greatly. CONCLUSIONS: Interpellet attenuation was a dominant factor in determining the distribution along the length of the pellet train. MCNPX calculated doses accurately when the pellets and applicator walls were included in the geometry. The point source approximation is adequate lateral to the tandem. The point source approximation does not calculate dose accurately superior to the tandem or when photons pass through multiple pellets.


Assuntos
Braquiterapia/instrumentação , Neoplasias dos Genitais Femininos/radioterapia , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/instrumentação , Braquiterapia/métodos , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Feminino , Neoplasias dos Genitais Femininos/patologia , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Sensibilidade e Especificidade
18.
Phys Med Biol ; 50(21): 5075-87, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16237242

RESUMO

We used radiochromic film dosimetry to validate a Monte Carlo (MC) model of a 192Ir pulsed-dose-rate (PDR) source inside a Fletcher-Williamson ovoid. MD-55-2 radiochromic film was placed in a high-impact polystyrene phantom in a plane parallel to and displaced 2.0 cm medially from the long axis of the ovoid. MC N-particle transport code (MCNPX) version 2.4 was used to model the ovoid and the 192Ir source. Energy deposition was calculated using a track-length estimator modified by an energy-dependent heating function, which is a good approximation of the collision kerma. To convert the estimates of the MC dose per simulated particle to clinically relevant absolute dosimetry, additional MC models of an actual and a virtual 192Ir source in dry air were simulated to determine air kerma strength for the penetrating part of the photon spectrum (>11.3 keV). The absolute dose distributions predicted by MCNPX agreed with the film results and were within +/-9.4% (k = 2) and within +/-2% or within a distance to agreement of 2 mm for 94% of the dose grid. Additional MC models characterized the uncertainty resulting from source positioning inside the ovoid. For a worst-case scenario of 1 mm off centre from the nominal source position in the 3 mm diameter ovoid shaft, the average dose deviation over the film plane was +/-5% (1sigma = +/-4%), with maximum deviation near the sharp dose-gradient provided by the shields of -20% to + 26%. A validated MC model is the first requirement to simulate common LDR clinical loadings (5-20 mgRaEq) and, thus, will aid in the transition from the current 137Cs Selectron LDR ICBT to PDR for treatment of gynecologic cancers.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Calibragem , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Poliestirenos/química , Temperatura , Fatores de Tempo , Filme para Raios X
19.
Int J Radiat Oncol Biol Phys ; 63(2): 615-21, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16168853

RESUMO

PURPOSE: To determine the effects of Fletcher Suit Delclos ovoid shielding on dose to the bladder and rectum during intracavitary radiotherapy for cervical cancer. METHODS AND MATERIALS: The Monte Carlo method was used to calculate the dose in 12 patients receiving low-dose-rate intracavitary radiotherapy with both shielded and unshielded ovoids. Cumulative dose-difference surface histograms were computed for the bladder and rectum. Doses to the 2-cm(3) and 5-cm(3) volumes of highest dose were computed for the bladder and rectum with and without shielding. RESULTS: Shielding affected dose to the 2-cm(3) and 5-cm(3) volumes of highest dose for the rectum (10.1% and 11.1% differences, respectively). Shielding did not have a major impact on the dose to the 2-cm(3) and 5-cm(3) volumes of highest dose for the bladder. The average dose reduction to 5% of the surface area of the bladder was 53 cGy. Reductions as large as 150 cGy were observed to 5% of the surface area of the bladder. The average dose reduction to 5% of the surface area of the rectum was 195 cGy. Reductions as large as 405 cGy were observed to 5% of the surface area of the rectum. CONCLUSIONS: Our data suggest that the ovoid shields can greatly reduce the radiation dose delivered to the rectum. We did not find the same degree of effect on the dose to the bladder. To calculate the dose accurately, however, the ovoid shields must be included in the dose model.


Assuntos
Método de Monte Carlo , Lesões por Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Reto/efeitos da radiação , Bexiga Urinária/efeitos da radiação , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Projetos Piloto , Estudos Prospectivos , Proteção Radiológica/métodos , Tomografia Computadorizada por Raios X
20.
Med Phys ; 32(7): 2288-94, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16121584

RESUMO

The Fletcher Suit Delclos (FSD) ovoids employed in intracavitary brachytherapy (ICB) for cervical cancer contain shields to reduce dose to the bladder and rectum. Many treatment planning systems (TPS) do not include the shields and other ovoid structures in the dose calculation. Instead, TPSs calculate dose by summing the dose contributions from the individual sources and ignoring ovoid structures such as the shields. The goal of this work was to calculate the dose distribution with Monte Carlo around a Selectron FSD ovoid and compare these calculations with radiochromic film (RCF) and normoxic polymer gel dosimetry. Monte Carlo calculations were performed with MCNPX 2.5.c for a single Selectron FSD ovoid with and without shields. RCF measurements were performed in a plane parallel to and displaced laterally 1.25 cm from the long axis of the ovoid. MAGIC gel measurements were performed in a polymethylmethacrylate phantom. RCF and MAGIC gel were irradiated with four 33 microGy m2 h(-1) Cs-137 pellets for a period of 24 h. Results indicated that MCNPX calculated dose to within +/- 2% or 2 mm for 98% of points compared with RCF measurements and to within +/- 3% or 3 mm for 98% of points compared with MAGIC gel measurements. It is concluded that MCNPX 2.5.c can calculate dose accurately in the presence of the ovoid shields, that RCF and MAGIC gel can demonstrate the effect of ovoid shields on the dose distribution and the ovoid shields reduce the dose by as much as 50%.


Assuntos
Braquiterapia/instrumentação , Proteção Radiológica/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/radioterapia , Braquiterapia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Dosimetria Fotográfica , Géis/efeitos da radiação , Humanos , Método de Monte Carlo , Polímeros/efeitos da radiação , Lesões por Radiação/prevenção & controle , Proteção Radiológica/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...